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Note 

A Note on the Leap-Frog Scheme 
in Two and Three Dimensions* 

The leap-frog finite-difference method [I] for solving hyperbolic linear and 
quasi-linear systems of partial differential equations is convenient to program and 
requires few function evaluations. We consider the following system of equations: 

au aF aG aH -=- 
at ax+q+T (1) 

where u(x, y, z; t) is a q component-vector function; for example in hydrodynamics 
u is a five-vector. The vectors F, G, and H are functions only of u, and we denote 
by A, B, and C their Jacobians with respect to u, i.e., A = A(u) = aF/i?u, etc. 

The leap-frog finite-difference scheme is the following: 

I&+1 _ 
%.k,m - Ui”.;fm + (dt/d~)[F($+l,k,m) - F(“~-l.k.m)~ 

+ (At/b’)[G(U:k+,m) - G(f(:k-l.m)l 

+ (At/AZ)[H(Uj”.k.nt+l) - H(Uibn-l)l (2) 

The stability condition for the one-dimensional case, i.e., G = H = 0, is 

At < Ax/p(A) (3) 

where p(A) is the spectral radius of A(u). In two space-dimensions, H = 0, the 
stability condition is 

where it has been assumed that A and B are simultaneously symmetrizable. 
Under similar conditions on A, Band C, the three-dimensional stability condition 

is 

At < 1 
(p(A)/& + (P(~!Y) + (dC)/“z) - (5) 

* This paper was prepared as a result of work performed under NASA Grant NGR 47-102-001 
and Contract Number NASI-14101 while the authors were in residence at ICASE, NASA Langley 
Research Center, Hampton, Virginia 23665. 
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It should be pointed out that the simultaneous symmetrizability constraints on 
A, B, and C are not severe in practice. For example, the hydrodynamic equations 
satisfy this restriction [2]. When A = B and Ax = fly, (4) gives half the 
theoretically allowable CFL time step. Similarly the worst case of (5) gives 4 the 
theoretical allowable CFL time step. We shall now show how by a slight modifica- 
tion of the leap-frog algorithm one may improve on (4) and (5) by factors of 2 and 
2.8, respectively. 

Consider the two-dimensional case first. We propose to solve (l), with H = 0, 
by the following finite-difference scheme: 

+ (dt/oy){G[(l/2)(uj=l,~+~ + 4-~,k+hl - GKWW+:,,,-1 + CI,~>. 

Standard stability analysis [3] leads to the requirement that the absolute magnitude 
of the eigenvalues of the matrix 

D = 2A”5(1 - [2)1/2 (1 - 2~~) + 2&(1 - 112)1/2 (1 - 262) (7) 

be less than or equal to unity, where 

A = (At/Ax) A, s = (dt/dy) B (8) 

and c = sin(ol/2) and ~7 = sin@/2) w h ere 01 and /3 are the two fourier transform 
variables. Due to the symmetry of A and B we may, in view of (7), write 

P(D) G 2~40 t I(1 - P’* IQ - $*)I + 2p(B)~ rl(l - 712)1/2 1~1 - 2p)1 (9) 

and hence a sufficient condition for stability is 

pm 4 II 1 - 292 I(1 - Py + p(B)1 7 II 1 - 2J? I(1 - 772)1/2 < 4. (10) 

It is clear from (10) that the best that we could hope to achieve is p(J) < 1, 
p(B) < 1. We shall now show that this is also a sufficient condition, by proving 
that 

(p(1 - t”)( 1 - 2?72)2)1/2 + (772(1 - 772)(1 - 252)2)1’2 < 4. (11) 

We rewrite the left-hand side of (11) to get 

20 - ($ - 3)2)1/2 ((p - *yy/2 + 2($ - (72 - ip)1’2 ((p - $)2)1” < ij (12) 
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which is readily verified by the Schwartz inequality. This proves that the condition 

is a sufficient condition for stability. 
It is interesting in this stage to check whether we lose accuracy by using (6) 

instead of the two-dimensional version of (2). We would like to check the phase 
error of (6), but unlike [l] we consider the fully discretized scheme. For (2) we get 

P.E. = - ~[l-(~~)z]-~[l-(~B)2] +f(a$4)(/3~BJ1 

whereas for (6) we get 

P.E.= -~[l-($4)2]-&[l-(+3)2]-~[l-~(~)‘] 

B/ICY2 --[I -gf($g2] 
V-4 

where 01 = w, Ax B = w, dy. A and B are scalars now. From (13b) it is clear that 
one minimizes the P.E. by taking (At/Ax) A and (AtlAy) B to be as close as possible 
to the stability limit (At/Ax) A - 1 and (AQly) B - 1. This does not happen in 
(6a) since the last two terms will grow. It is clear that (13b) presents better Phase 
error than (13a). This surprising fact can be explained by looking at the truncation 
error. For scalar linear equations, the scheme (6) is fourth-order accurate if 
(At/Ax) A = 1 and (dt/dr) B = 1. This is not true for (2). 

For arbitrary A and B condition (13) allows a time step which is twice as large 
as that allowed by (4). In order to decide which scheme is more efficient we have to 
compare the number of operations required by the leap-frog scheme (2) and the 
modified one (6). Let (P, , Pz , PJ denote the number of multiplications, divisions 
and additions required to evaluate the vector (At/Ax) F (or (AtlAy) G). Let R be 
the number of total operations required for a scheme to advance the solution by 
one time step; then for (2) we get 

R, = 4P, multiplications + 4P, divisions + (4P, + 4q) additions whereas for 
(6) we get 

R, = (4P, + 4q) multiplications + 4P, divisions + (4P, + 8q) additions. 
For nontrivial problems (RJR,) < 2 and therefore the scheme (6) is much more 
efficient. 
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The above discussion did not take into account any specific form of the vectors 
F and G. We would like to discuss now in more detail the Euler equations of 
inviscid flow. In this case F and G are given by 

;F= 

G= 

It is easy to compute that 

mn 

-F 
1-Y ‘ymE - m(m* + n”) + - 

2P2 P 

m 
mn 

1-Y vE - n(m” + n”) + - 
2P2 P 

P,=14 P2=5 P,=4 q=4 

and therefore 

R2 = 56 multiplications + 20 divisions + 32 additions 
R, = 62 multiplications + 20 divisions + 48 additions. 

The stability condition for the scheme (2) can be put in the form 

Llt((u2 + uy + c} < l/21/2 
and for (6) 

(15) 

dt((u2 + vy2 + c} < 2112. (16) 

Hence (6) is much more efficient than (2). 

i , 

I (14) 

The three-dimensional case corresponding to Eq. (2) can be written as follows: 

where 

E~+l.k.m = ~[“i+l.k+l,m+l + Uj+l.k-l.m-1 + Uj+l.k+l.m-l f ~~+~k--l.rn+J 
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The stability condition can be shown to be 

(W 

It is not known if there is some other averaging that improves condition (18). It 
can be shown, however, that one cannot get maximum stability, i.e., 

(Wx) pw < 1 GwJ9 p(B) ,< 1 @ W) p(C) < 1. (19) 

It is our feeling that (17) is optimal in the sense that it combines simple averaging 
and large time steps. 
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